
JOl;R:"AL OF APPROXIMATION THEORY 65.3-21 (1991)

B-Splines, Palya Curves, and Duality

PHILLIP J. BARRY

Computer Science Deparment. Unh'ersity of Minnesota.
4-192 EE;CSci Bui/dinK. 200 Union St. SE. Minneapolis. Minnesota 55455

ROl'ALD N. GOLDMAN

Department of Computer Science. Rice University.
Houston. Texas 77251

AND

TONY D. DERoSE

Department of Computer Science. FR-35. University of WashinKlOn.
Seal/Ie, Wash inKton 98195

Communicated by Charles K. Chui

Received March 16. 1987; revised July 10, 1990

Local duality between B-splines and P61ya curves is examined. mostly from the
viewpoint of computer-aided geometric design. Certain known results for the two
curve types are shown to be related. A few new results for P61ya curves and a curve
scheme related to B-splines also follow from these investigations. 'C.' 1991 Academcc

Press, Inc.

I. INTRODUCTION

A powerful technique for investigating the properties of B-splines is to
exploit the properties of the functions'" ;(t) =n;:7+ 1 (t j - t) (where the tj

are knots and the spline is of degree n (order n + I)) which bear an
intimate relationship to B-splines (see, e.g., (7]). These functions are also
quite similar to the blending functions of the P61ya curves presented in
[10] and further developed in [ I, 2]. P61ya curves are polynomial
generalizations of Bezier curves, and share many of the features which
make Bezier curves suitable for CAGD (computer-aided geometric design).
Because of the similarity of the P61ya curve blending functions to the func­
tions '" ;(t), there is an intimate relationship between B-splines and P61ya
curves. The main purpose of this paper is to examine this relationship from
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4 BARRY, GOLDMAN, AND DEROSE

the viewpoint of CAGD, and note the connection between certain results
for B-spline curves and certain results for P6lya curves.

The paper is structured as follows: in Section 2 we set some notation,
explain our approach, and review some known results. Section 3 begins the
discussion of the relationship between B-splines and P6lya curves, and Sec­
tion 4 continues this discussion by examining change of basis procedures.
In Section 5 we employ some of the results from Section 4 to generate a few
new results for P6lya curves and another curve scheme which is related to
B-spline curves. Section 6 contains concluding remarks.

2. ApPROACH, NOTATION, AND BASIC RFSVLTS

P6lya curves are polynomial, B-spline curves are piecewise polynomial.
To achieve greater compatibility between these two schemes we will deal
with B-splines locally--that is, over one knot interval. Some of the results
we obtain extend readily to results about B-spline curves; indeed certain of
the results are modifications of results given, using the l/Ji, in [7, 12].
However, this paper differs from those in that our primary intent is not to
derive properties of B-spline curves but to note the interplay between
features of B-spline curve segments and features of P61ya curves.

For a given knot sequence t, B-spline basis functions can be defined
recursively by

XE [ti' t H d

else

(I)

where the superscript denotes the degree and the subscript the leftmost
possible point of support (i.e., b7(t) vanishes outside of [ti' ti+ n + 1 )). An
nth degree B-spIine curve can be written as

b(x) = Lb7(x) Pi' (2)

where the Pi are control vertices.
The B-spline curve segment over the single interval [t", t" + I) is then

"b(x)I[/•. I.'l)= L (h7(x)PJI[I•. '._il'
1= 'I n

(3)

since the other basis functions vanish over [t", t" + I)' Therefore b(x)\ [1•. ' •• 1i

depends only on the 2n knots t" n fl.. t" .,. n'
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Before P6lya curves are introduced, this setup must be generalized some­
what since P6lya curves can be defined by a knot sequence which is not
necessarily nondecreasing (as long as, in our case, tq _ i - tq + , + j #- °for all
i, j ~ 0, i +j < n, in order to avoid singularities), and can also be defined
over all the reals. Since the B-splines are considered locally, it is possible
to modify the above definitions to accommodate these generalizations. The
functions in (1) are redefined by

x- t
h;'(x)= I b;'

t,+" - t,

= 0 else,

q-n~i~q (4)

over all the reals, and used in (2) to get what we will call the "generalized
B-spline segment" bq(x). Note that although (4) differs slightly from (l),
over [t q , tq + 1) they are equivalent in the usual B-spline context (non­
decreasing knot sequence).

The P6lya blending functions have a recursion formula similar to
Eq. (4). Define the blending functions by

d?(t)=:bq,

(- t
'(t) + " , d;'.- i(t)

t,+",,-t'+1

= 0 else

(5)

and the nth degree P6lya curve by

q

dq(t) = I. d7(t) Pi·
i = q n

(6)

Note that although both the P6lya and the generalized B-spline curve
segment basis functions depend on q, this dependence is not represented
in the notation. Also, Eqs. (5) and (6) differ from the presentation of P6lya
curves given in [1, 2] where shape parameters J1., and vi are used instead
of knots; however, the two forms are related by

(7)

Moreover, the basis functions are labeled here differently, with the function
d7(t) in [1,2] corresponding to d;_i(t) of this paper.

Since the functions d7(t) and b7(x) are 0 if i < q - n or i> q, when we
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mention the set of functions d;'(t) or the set of functions h;'(x) below we
mean only those for which q - n ~ i ~ q.

Both the generalized B-spline and the P6lya blending functions have
natural probabilistic interpretations and can be generated from simple
stochastic models. Consider an urn which initially contains II' white and h
black balls. One ball at a time is now drawn at random from the urn, and
its color inspected; then the ball is returned to the urn. Additional balls are
then added to the urn in the following manner.

P6lya model: If the ball was the jth white ball [jth black ball] to be
chosen, then ('j(w+h) additional white balls [dj(w+h) additional black
balls] are added to the urn.

B-spline model: If the ball was the jth white ball [jth black ball] to the
chosen, then dj (IV + h) additional black [('/ (II' + h) additional white balls]
are added to the urn.

Let
II'

X=I=--
i'1'+h

d=lq~I+I-lq-i

I tq+I-Iq
i=I ..... n-l (8)

d~ i (t) = the probability of selecting exactly i white balls in the first n
trials from the P6lya urn model

n; n + i (x) = the probability of selecting exactly i white balls in the first
n trials from the B-spline urn model.

Then it is easy to show probabilistically that the functions
d7( (I - Iq)/(Iq + I - I q ) and E;'(x - I q )/(tq + I - 1q)) satisfy (5) and (4), respec­
tively. Therefore they are the B-spline and P6lya blending functions. This
construction can be generalized further by permitting negative values for cj '

d
J

, and letting x and 1 range over all the reals. Further details are given in
[I, 10, II].

These urn models for B-spline and P61ya blending functions are related
in an obvious manner: in the P6lya model only balls of the same color as
the color chosen are added to the urn; in the B-spline model only balls of
the opposite color to the color chosen are added to the urn. One would
therefore expect some interesting relationships between these probability
distributions. These relationships are the major theme of this paper.

As mentioned above. P6lya curves share many features with Bezier
curves. A few features we shall use in this paper are derived in [I, 2] and
are listed below:

(I) Sum to unity,

(9)
i - q "



B-SPLINES AND P6LYA CURVES

(2) (Nearly) explicit formula,

I+fl

j- i·· 1

7

( 10)

where the ~Il.i are constants which can be found recursively.

(3) Basis. The d;'(t) form a basis for the space of all degree n (or
less) polynomials itT ~1l,i#O for i=q-n, ..., q. The functions d7(t)/C,.i will
always form a basis, even if one or more of the (Il.i = O.

(4) Degree elevation,

Y. [dllll(t) dIl11(t)]d;'(t) = (,11.1 ~ _ y'-1 .

ti+n+1-t, ~llll.i (,n+l.i I

(5) Interpolation at "endpoints,"

(11 )

and (12)

(6) Reparametrization. Let d;'( t) denote the P61ya curve blending
functions defined by the knot vector

n + I - c tq. II 12 - C tq - C [q I 1 - C [q I " - C), , ..., , , ..., .
a a a a a

Then

d7(al + c) = d7(t).

3, B-SPLINES, POLYA CURVES, AND DUALITY

(13)

We are now ready to examine the relationship between generalized
B-spline segments and P6lya curves. The main tool will be the de Boor-Fix
form of the dual basis for B-splines. Since a slightly modified case is
studied, a proof of this result is included. It is then used to establish some
relationships between the two curve schemes. A few preliminary lemmas
are needed.

LEMMA 1 (Marsden [13]).

(x-t)"=
;= q- n

(\4)

Note that the inclusion of the normalizing factors into the d7(t) necessitates
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the denominator. The case where (n.,=O (which may occur-see [1,2])
presents no problem since (II.; also appears in the numerator in d;l(t).

Proof By induction on n. The result is certainly true for n = O. Observe
that for any i

By the inductive hypothesis

(IS)

'I

(X-t)"= L
i= 'I n + I ~" I.i

This equals, by use of (10),

2: (x-t,) h;' '(x)~d7(t)+L(t;·II-X)h;1 '(X)_y_l_ d;, ,(l)
t i t f/ -Ii ~11.i If +,,- Ii ':,,,.i - I

by (4).

1= q " ~".i

Q.E.D.

Define linear functionals ).;' (for i =q - n, ..., q) by

'II II (_I)n r [d7(r)](n-r) [f(r)](r)
I.;[/(X)] = L ,r ' (16)

r = 0 n. '='n,i

where the value r at which we evaluate the derivatives can be any real
number.

That these are indeed functionals on the space of all polynomials of
degree n or less follows from the next lemma.

LEMMA 2 (see [5, p. 127]). If f is a polynomial oj' degree less than or
equal to n, then ;';1 f is a constant.

Proof This follows from the easily verified fact that the derivative of
U7 J] with respect to T is identically O.
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LEMMA 3. ).7(x - t)" = d;'(t)/C,.,

9

Proof In (16)[(x-tlJ(r)I,~! may be evaluated at any hoice of T;

choosing T = t reduces (16) to d;'( tl/(" ,.

THEOREM I (de Boor and Fix [6]). i.;' h;' = Ii 'I"

Proof By Lemma I (x - t)" = L1~q _"d;'(t) h;'(x)/(".r Apply).;' to both
sides and use Lemma 3 to get

d"(t) '/ d"(t)
_'_ = " _'_ ~nhn

v L-.... I~f.l .

~".i i- q 11 ~n.1

( 17)

The result now follows from the linear independence of the functions
d;'(t)/(".r Q.E.D.

Note that Theorem I implies that the h;'(x) are always linearly inde­
pendent. (Apply).; to both sides of L'f~q "c,b;'(x)=O to get cJ=O for
every j.) Thus they form a basis and the i.;' comprise the dual basis.

Theorem I will be used to show how the possession of a desirable feature
by generalized B-spline segments affects P61ya curves, and vice versa. We
begin with some simple properties, first noting a relationship between the
basis functions' lead coefficients, then mentioning a condition for non­
degeneracy of P61ya curves, and finally looking at a few interpolation
results.

First note, by differentiation of (10), that [d;'(tl]("'=n!(-I)"(".,.
Furthermore, by differentiating (14) n times with respect to x, using (9)
and the fact that the functions {d;'(t )/(".,} are linearly independent, one
obtains [b;'(x)]("'=nl(".i=(-I)" [d;'(t)]("). Since we can therefore
replace the constants ("., in Marsden's identity (14) or the de Boor-Fix
formula (16) by either [h;'(x)](1')/n! or (-I)" [d7(t)](")/n!, these formulas
are (save for a factor of (- I)") symmetric in d;'(t) and b7(x).

A curve scheme in CAGD is said to be nondegenerate if the only time
the curve collapses to a single point is when all the control vertices are
located at that point. A necessary and sufficient condition for a curve
scheme to be nondegenerate is that its blending functions be linearly inde­
pendent [10]. P6lya curves are thus nondegenerate iff no ("., = O. From the
preceding remarks it follows that

THEOREM 2. Over a knot vector t, nth degree P61ya curves are non­
degenerate iff the blending functions of the corresponding generalized
B-spline segment are all of exact degree n.

One aspect of P6lya curves which makes them noteworthy is their inter-
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polatory properties [1, 2]. Suppose a nondegenerate P6lya curve always
interpolates Pj at i. Then d7(i) = J;j'

THEOREM 3. A nondegenerate P6lYG curve of degree n over Gknot vector
t interpolates Pj at i iff the generalized B-spline segment hlending function
b;(x) = (n./(x - ir.

Proof By Theorem 1 and Lemma 3 b;(x) = (n.j(x - i)n iff i\ =

A.;'[(n.l'( - i)"] iff Jij = C,.Jd7(i)/(n.i iff the P6lya curve interpolates PJat i.
Q.E.D.

Given values SO'''',Sn, if we choose the knots tq+1_j=s/ I and
tq + j = S n j I I for j = 1, ... , n, the P6lya blending functions become the
Lagrange cardinal functions [ 1, 2]. We therefore get the following
corollary.

COROLLARY. A P61ya curve is the Lagrange interpolating curve iff the
generalized B-spline segment blending functions h7(x) = C,.i(X - .1',_ n J'.

As with B-splines, a generalized B-spline segment will interpolate at t q or
tq+ I to Pq_ n or Pq if tq _ n+ 1 = tq n+ 2 = '" = tq or tq+ I = tq+ 2 =

t q + n , respectively. This gives us the following result.

THEOREM 4. bitq)=Pq-n iffd~ n(t)=(n.q_n(tq-tr. bq(tq+d=Pq iff
d~(t) = (n.q(tq+1- t)".

4. CHA:'IIGE OF BASIS PROCEDURES

We now examine change of basis. Here duality has many interesting
manifestations.

To begin, consider a simple change of basis to the generalized B-spline
segment blending functions from some set of functions g7(x) i = q - n, ... , q
which form a basis for degree n or less polynomials. Then there exists a
matrix B such that b;(x) = L.'!~ q n B ijg7(x). In fact, it will be useful to
look at a more general case involving derivatives of the b7(x). Consider the
matrix B such that

q

[h/n+s(.v)](S)= " B n( ), L ijg; x.
1- q -- n

(18 )

Note that B is an n + 1 by n + s + I matrix with row indices running from
q - n to q and column indices from q - n - s to q. Below, B[n] is used
instead of B to indicate dependence on n.
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This matrix is related to the n + s + I by n + I matrix D (as with B, we
shall write D as D [n] if necessary) specified by

q

h7(t) = L D/,d7+S(t),
} = l/ -- n -- s

(19)

where the h;'(t), i = q - n, ..., q, are the unique polynomials of degree n or
less such that

"
(x - tt = L ~,(x) h;(t).

,-0

(20)

These h;(t) must exist because the g;(x) are a basis for degree n or less
polynomials, and (x - tt is a degree n polynomial in x with coefficients
degree n or less polynomials in t. Note that differentiating (20) with respect
to x and evaluating at x = 0 shows that h ,(t) also form a basis.

Now by the same argument we used for the P61ya and generalized
B-spline segments we get

(21 )

Sometimes it is advantageous to replace h7(t) by h7(t)/c".; for some
constants C".i' In this case (20) and (21) become

and

(x-t)"= f g;(.:t)h;(t)
. C
1=0 11.1

(22)

(23)

Define linear functionals on the space of polynomials of degree at most
n by

" ( 1)" - r
87I(x)= L -, [h7(r)](,,-r) [.f(r)](r).

r~O n. C".i

Then by (21) the ()7 are the dual basis for the g7(x).
Also define

11 (-1)" -·r [h"(r)](r) [I(r)]I" r)
¢11 I (x) = L ':""--"':""'----=--.!...:'~---=.::.....:........-=------

I r=O n!'".i

(24)

(25)
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Note that in order for ~7 to be defined it is necessary that ~"., #- 0 for all
i. Therefore for the remainder of this paper, unless otherwise stated, (".1 #- 0
(or, equivalently, the corresponding P61ya blending functions form a basis).
From Theorem I, ;7 d7 = (ji,i.e., the ;7 form the dual basis for the P61ya
blending functions.

Applying e;' to (18) yields

II (_ I)" r

B= L [h;'(r)]lll-r i [bJ+S(r)]lr+s l• (26)
" r~O n! ('11.1

Applying ~J +, to (19) yields

D
ii
=''is (_I)~~S r [h7(r)]I,,+s-rl [bJ+'(r)]lr)

r=O (n+s). ~,,+s.j

" (I )" - rL -, [h;'(r)]lll-r) [bJ+ S(r)]lr \'1. (27)
r~O (n + s). (" I s.j

Comparing (26) and (27) provides the relationship

B= (n+s)! ("Hi D
I} n! ('"., fl'

(28)

By interchange of the roles of the P61ya and generalized B-spline segment
blending functions and using techniques similar to those employed above,
it follows that

(29)

where Band D are the matrices such that

q

gJ(x) = L
i= q -·11 - \"

Bh" + S(x)
IJ I '

q

[d7+'(t)]IS)= L DjihJ(t). (30)
j - q - "

Some dual properties that spring from (28) and (29) are now considered.
To begin, take the case s= I, g7(x)=b7(x). Then if C".i=(".i' it follows

that h7(t) = d7(t). This case applied to (28) therefore implies that the simple
two-term differentiation formula for B-splines [5]

can be derived from the the simple two-term degree elevation formula (11 )
for P61ya blending functions, and vice versa. Further (29) implies that
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degree elevation of generalized B-spline segments (a different process than
degree elevation for B-spline curves) is related to differentiation of P6lya
curves; while neither of these processes is simple, the main point here is
that an algorithm for one will provide an algorithm for the other.

In the remainder of the cases, let s = O.
Consider now a change of basis to or from the power basis. That is, let

g;;_" . ;( x) = x'. It is not difficult to verify that

" (I)" r

~ . [r"-'J 1" rl [r'J1r'=b.
L n! (-I)" '(") I "

r..:..: 0 .I

(32)

Thus if c".q "1;=(-1)" ;C;) I, then h~ ".;(t)=I" '. Therefore trans­
forming generalized B-spline segments to and from the power basis is dual
to transforming P61ya curves from and 10 the power basis.

As an example in this context, in [I, p. 46 J a recursion formula for the
matrix D[nJ transforming the P61ya basis to the power basis is given by

D [J ~" I., I, D [ I J
ii n = v i." + 1 n-

<'''.I(t,,+,-I,)

v . I
(,,,-1.,.1 "')11 D . [ -IJ

v ( ) 1+I.,+ln
l, II. j I" + j • 1 - I, + I

q-n~i~q-I

(33)

Therefore, using (28), we get that the matrices given by

n [ 1,1+1+ IBu[nJ=--. . B;ll.l+ I[II-IJ
q - I I" I i I I - 1,_ I

q-lI~i~q-1

(34)

transform the power basis to the generalized B-spline segment basis.
Note that the matrices for transforming to the power basis (from both

generalized B-spline segment blending functions and P61ya blending
functions) can also be found explicitly by Marsden's Lemma.

The Bernstein basis functions satisfy the relation

" (_I)I,,-rl[(~_)r"-I(I-r)I]I" rl[(7)r'(I-r)" ']Irl=(j

r~o n!(-I)"-)(,,~;) If' (35)

so transforming generalized B-spline segments to and from Bezier curves is
dual to transforming P61ya curves from and to Bezier curves.

MO f,~ J.~
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Formula (35) is a consequence of Theorem 1 because if tq 11+ 1= ... =
tq = 0 and tq+ I = ... = tq+ II = I, then the B-spline segment curve scheme
and the P61ya curve scheme coincide, and are actually just the Bezier curve
scheme. Therefore, the formulas for generalized B-spline segments and
P61ya curves can be particularized to results about Bezier curves.

Next suppose that the g7(x) are generalized B-spline blending functions
over another knot vector t. Then the h;'(t) are the P61ya blending functions
over t. Thus, transforming generalized B-spline segment blending functions
over the knot vector t to generalized B-spline segment blending functions
over the knot vector t is equivalent to transforming P61ya blending func­
tions over t to ones over t. More specifically, it follows from (28) that

y

B "".IDij=; ji'
~n,f

(36)

This, also, has many interesting special cases.
By (13), subdividing a P61ya curve by reparametrizing it is equivalent to

transforming it to another type of P61ya curve [1,3]. For example, to sub­
divide between t = 0 and t =~, it is necessary to find the matrix S(I1) such
that d7(l1t) = L; S(I1);; d7(t). From S(I1) and (36) one can obtain the matrix
which will transform the b7(l1x) to the b7(x). Therefore the matrix S(1/IX)
provides the subdivision matrix for generalized B-spline segments. (Note
that subdivision by reparametrization is different from the usual B-spline
technique of subdivision by knot insertion). Subdivision will be discussed
further in the next section.

Now define the knot vector i[mJ by

i, = t i i<m

=i i=m+ I

=t i I i> m + 1. (37)

That is, insert i as the (m + 1)st knot.
In the case that m < q note that since in definitions (4) and (5) the curves

are "centered" on the interval [lq, tq+tl= [iq+I' iq+2), it is only necessary
to consider the blending functions indexed from q - n + 1 to q + 1; the
curves will depend on the knots lq_ n+2' ..., tm, i, tm+I' ... , tq+n. The matrix
indices, etc., should be adjusted accordingly. In the case where m ~ q the
blending functions will be indexed as originally and the curve will depend
on the knots tq_n+\, ...,tm,i,tm+\, ...,lq+n_I' Now by using the degree
elevation formula (11), it is easy to prove that the matrix D transforming
the t P6lya blending functions to the t[m] P61ya blending functions is of
the form
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D, 1.,=1

D
II

= I

D,j=O

m<.j

m -n ~}~m

m -/1 ~}~m

}<m-/1

else. (38)

For if m <}, then d7(t) = d;'+ 1(t) from (10). If} < m - n, then d;'(t) = d;'( 1)

also by (10). If m~}~m-n-I, then

/ +-fl 1

d;'(f)=~".,(i-f) n (f,-f)
i = i. 1

J f" 1

= ("./ ((i - ,/ + ,,) + (t/ + " - ,)) n (f I - 1)
i=j+ 1

" "" "

=~d"(l)+~(i-l ) r '(I)
"'" JV .I t!l l I

~n.1 ":-n l, I

.-: . y . [". (d"(r) d" (t))J=~d"(t)+~(i-f ) ~" I.J _J .I_
I
_

'n. i J ~ 11 I. I J t " 1" • .i - t j (n. I ~ n. J I

Y [i-, f -i J= . '>".J . __J l"(l) + .I +" d." (,)
" ( / " ,I'

t J I II - 1., ~ 11, I ~ n. ./ 1

Since the matrix D expresses the functions d;'( f) in terms of the functions
d;'( f), it tells us how to delete the knot i from a P6lya segment. The dual
process for generalized B-spline segments is, of course, Boehm's knot
insertion algorithm [4] for B-splines in this context. By (36) and (38) the
insertion matrices are

B,., ,= I

B _'i+,,-i
'./- 1-

'/+" - f j

BJj = I

B,/=O

m <}

m-n~j~m

m-n~j~m

i<m-n

else. (39)

Since it IS not required that the knots be non-decreasing, the knot
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insertion here does not depend on how the knots are ordered in value, but
rather on how they are arranged in the knot vector. The processes of knot
deletion for P61ya curves and knot insertion for generalized B-spline
segments will be used in the next section.

In [I, p. 41] a method is presented to transform one type of P61ya curve
to another. This method involves finding the transformation matrix D[n]
recursively using a two-term recurrence relationship

+'" I. j+l(tj.".I- i '+")D[ -I]. 1n / ~ 1.1
(1+,,+,-(,+1

(40)

for j < q (there are various methods for finding the last (i.e., q th) column
[1] ).

Applying (36) provides the two term recurrence relationship for the
associated transformation of generalized B-spline segments

i -( (-i
B[n]lj= 1+" )B[n-IL+ )",+1 iHB[n-ILI+1 (41)

(j.,,-(, (,+,,+1-(/11

for j < q. This is the recurrence relation for the Oslo algorithm [8].
There is, in [t], another two-term recurrence relationship for P61ya

curves similar in form to (40),

D[n]= A (".1 l'''· 1.)f,+I-(J D[n- t])' r r (_ ( j. i + 1
~n .- I.i+ 1 ':tn.j lof " .I

(42)

for j> q - n. Substituting (36) into (42) produces another Oslo-type
recurrence relationship for generalized B-spline segments,

i, • I - () (j I " I I - i, . I [ I J
B[nJ'j= B[n-IJ,<I.'+ Bn- 1<1.)<1

(/+,,-(/ (1Inll-(/11
(43)

for j> q-n.
For examples of other change of basis formulas involving P61ya curves

and generalized B-spline segments, see [1].
In summary, the dual properties of P61ya curves and generalized

B-spline segments include the following:
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Properties of
generalized B-spline segments

I. [h7(x)]'n, = n!Sn,
2. each h7(x) is of exact degree II

3. h;'(x) = Sn.,(x - i)"
3a. h;'(x) = Sn.,(x - s,." q)n

i= q - n..... q
4. interpolates Pq n [resp. PqJ

atlq[lq ,,]
5. degree elevation
6. differentiation
7. conversion to power basis by

Marsden's Lemma
8. change of basis to [from] h-curves

8a. change of basis to [from 1power
hasis

8h. change of hasis to [from J Bezier
8c. subdivision (hy reparametrization)
Rd. knot insertion
Re. Oslo algorithm

8f. other Oslo-type result

9. arise from opposite color urn model

Properties of
P(')Jya curves

[d7(t)]'''' = II! (_I)n Sn.,
nondegenerate
interpolates P, at i

the d7(t) are the
Lagrange cardinal functions

d: ,,(I) = Sn.q ,,(tq - t)"

[d:U) = ~,,) I q • , - t}n J
differentiation
degree elevation
conversion to power basis by
Marsden's Lemma
change of basis from [to J!(-curves

change of basis from [to] power basis

change of basis from [to] Bhier
subdivision (by reparametrization)
knot deletion
two-term recurrence for transforming

one type of P61ya curve to another
other two-term recurrence for

transforming one type of P6lya curve
to another

arise from same color urn model

5. SOME NEW RESULTS FOR POLYA CURVES AND

GENERALIZED B-SPLINE SEGMENTS

In this section we will use the results of the previous section, in particular
the knot insertion/knot deletion techniques, to prove some new results
about P6lya curves and generalized B-spline segments.

The underlying idea in these results is that repeated knot deletion [inser­
tion] can be used to change one type of P6lya curve [generalized B-spline
segment] to another. Suppose we wish to change a i P6lya curve to a t

P6lya curve. A strategy for doing so is

ALGORITHM I. Steps k = I, ... , n: delete the q - n + k th i knot and intro-
duce as the new "first" knot the value tq + 1 k'

Steps k = n + I, ... , 2n: delete the q + 2n + I - kth i knot and introduce as
the new "last" knot the value tq n + k'

To transform a t generalized B-spline segment curve to a i generalized
B-spline segment curve we use knot insertion:
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ALGORITHM 2. Steps k = I, ..., n: insert i« ~ 1 k as the new q + I - k th
knot (thereby making the curve no longer dependent on ,«_ "' k)'

Steps k = n + I, ..., 211: insert i'l 11 + k as the new q - n + kth knot (thereby
making the curve no longer dependent on '" • 211 I I k)'

Therefore the transformation matrices for transforming one type of
P61ya curve to another or transforming one type of generalized B-spline
segment to another are products of at most 2n knot deletion or knot
insertion matrices, whose forms are given in (38) and (39). The matrices
transforming the blending functions are the same ones which transform the
control points [9]. Therefore there are simple algorithms for these trans­
formations. In particular, they consist of at most 2n steps; in the k th step
new control points QikJ are obtained from a linear combination of either
the odd control points QJk I] and QJ: 1 I] or the old control points
Q) k;- I] and QY -I] (where the Q) 0 1 are the original control points, and the
Q)""] will be the new control points). Further details are given in [1,3].

Having briefly presented these algorithms, we wiIl now use the techni­
ques of knot insertion and deletion to prove some results about generalized
B-spline segments and P61ya curves. Recall from Section 3 that the h7(x)
always form a basis for the space of polynomials of degree at most n. Here
is another result concerning the h;'(x).

THEOREM 5. Let a=max, «_ ".!. .'/i and h=min i "~I.",«'"',, II'
a < h, then the h;'( t) satisf.i' Descartes' Law (~( Signs on (a, h).

Proof Use Algorithm 2, inserting a in steps I through nand h in steps
n + I through 2n. Then the resulting blending functions are reparametrized
Bernstein basis functions. These satisfy Descartes' Law of Signs on (a, h).
Moreover, the product of the insertion matrices transforms the
reparametrized Bernstein basis functions into the original h7(x). Now if this
product is strictly totally positive, the original h7(x) satisfy Descartes' Law
of Signs on (a, h) [9]. To prove that the product is strictly totally positive,
it is sufficient to prove that each insertion matrix is strictly totally positive.
This, in turn, follows directly from the form of the insertion matrices given
in (39).

COROLLARY. b«(t) is variation diminishing on [a, h].

Proof This follows from Theorem 5 and the discussion
Law of Signs in [9].

of Descartes'
Q.E.D.

Note that since we are in a different setting the corollary is not merely
a restatement of the variation diminishing property of B-spline curves.

The last topic we will discuss for generalized B-spline segments is sub­
division by reparametrization. A reparametrization result for the h;'(x)
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similar to (13) holds [I, p. 96]: let 67(x) denote the generalized B-spline
segment blending functions dependent on the knot vector

i = (t q II -'- 1 - c tq- c tq+ I - C tq+ II - C) .
a ' ... , a' a ' ..., a '

then

b;'(ax + c) = 67(x). (44)

Now suppose we have a generalized B-spline curve over a finite interval,
and wish to express a portion of that curve as the same type of generalized
B-spline curve. That is, we have two curves, the original one and the
portion of it. Both can be represented as generalized B-spline segments with
the same knots and domain; only the control points will differ. (Note this
type of subdivision differs from usual B-spline subdivision by knot inser­
tion, although it is similar to Bezier curve subdivision.) This process can be
done by using the reparametrization result above and then doing a change
of basis between the b;Cx-) and the b;'(x) with Algorithm 2.

We now turn our attention to P6lya curves. Algorithm I leads to many
results for P61ya curves. We sketch some of these here; a more detailed
discussion is the topic of [3].

THEOREM 6. Let a=maxi~q_/I'I.H.. qii and b=mini~q+I.H.q"/It" If
a<b, then the d;(t) sati.~fj.' Descartes' Law of Signs on (a, b).

Proof Use Algorithm I, introducing the value a in steps I through n
and b in steps n + I through 2n. Then the resulting blending functions are
reparametrized Bernstein basis fuctions, and the product of the deletion
matrices transforms the reparametrized Bernstein basis fuctions into the
original d7(x). Thus, as in the proof of Theorem 5, it is sufficient to prove
that each deletion matrix is strictly totally positive. This will follow from
the form of the deletion matrices given in (38) and the following observa­
tions: when a knot is deleted in steps 1 through n, all the knots with
smaller subscripts have value a. When a knot is deleted in steps n + I
through 2n all the knots with larger subscripts have value b. In steps I
through n the ratio of the "s appearing in the expression for D) _ l.j in (38)
is positive and the ratio appearing in the expression for Dj) in (38) is
negative [1,3] (remember the remarks concerning the indices in the
paragraph above Eg. (38)). In steps n + I to 2n the ratio of the "s
appearing in the expression for D

J
- l.j in (38) is negative and the ratio

appearing in the expression for DlJ is positive [I, 3].

COROLLARY. aq ( t) is variation diminishing on [a, b J-
One thing lacking in previous discussions of P6lya curves [I, 2] was a

simple subdivision algorithm. However, Eg. (13) and Algorithm I furnish a
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subdivision technique analogous to the technique just described for
generalized B-spline segments, although the presence of the "s makes the
algorithm for P61ya curves somewhat more complicated.

Our final result concerns the fact that P61ya curves interpolate their first
and last control points. Knot removal, therefore. gives us an evaluation
algorithm. In order to evaluate a P61ya curve at s, use steps I through n
to get the new qth knot equal to .1', or steps n + I through 2n to get the new
q + I st knot equal to s. In either case the deletion matrices can then be
applied to the original control points to get a new set of control points, the
first or last control point of which will be the desired value. Like the sub­
division algorithm, this algorithm is complicated by the presence of the Cs
[I, 3].

Note that the evaluation of generalized B-spline curves can be done via
n-fold knot insertion (essentially the de Boor algorithm) and evaluation of
P6lya curves via n-fold knot deletion.

6. COl"CLL'DlNG REMARKS

We have examined the relationship between two curve schemes,
generalized B-spline segments and P61ya curves, and have shown that the
duality provided by the (modified) de Boor-Fix form of the dual basis
connects certain results for these two schemes. Therefore these two curve
schemes can be considered as dual in this sense. Note that many of the
results mentioned above do not depend on particular properties of
generalized B-spline segments of P61ya curves, but work for any dual
schemes.

Some open questions still remain. As mentioned in Section 2, there are
probabilistic models from which we can derive generalized B-spline
segments and P61ya curves. Many properties of these curve schemes can be
obtained by probabilistic considerations [I, 10, II]. Are there probabilistic
proofs or interpretations for any of the results contained in this paper (in
particular for Marsden's Lemma and the de Boor-Fix formula), or does
probability theory in any way provide insight into them? Also, can the
results here be extended to surfaces in any way? Finally, since many of
these results are true for any dual schemes, are there any other dual
schemes that are of interest either in approximation theory or in CAGD?

ACKNOWLEDGMENTS

This work was supported in part by CDC sponsored research grant 85L'101 and DoE
Grant Contract DE-AC02-85ER 12046. The authors wish to thank Dr. Charles Micchelli of
IBM T. J. Watson Research Center for suggesting that B-splines and P61ya curves may he
linked via Marsden's Lemma.



B-SPLI~ES AND POLYA CURVES

REFERE~CES

21

I. P. J. BARRY, "Urn Models, Recursive Curve Schemes and Computer Aided Geometric
Design," Ph. D. Thesis, Department of Mathematics, University of Utah, Salt Lake City.
Utah, 1987.

2. P. J. BARRY AI'D R. N. GOLl)MAI', Interpolation and approximation of curves and
surfaces using generalized P6lya polynomials, Comput. Visioll Graphics Image Process.,
in press.

3. P. J. BARRY A~D R. N. GOLDMA~. Shape parameter deletion for P61ya curves. to appear
in Numerical Algorithms.

4. W. BOEHM, Inserting new knots into B-spline curves, ('"mput. Aided D('si~1I 12 (1980).
199-201.

5. C. DE BooR, "A Practical Guide to Splines," Springer-Verlag, Berlin, 1978.
6. C. DE BOOR AND G. FIx, Spline approximation by quasi-interpolants, J. Approx. Theon'

8 (1973).19-45.
7. C. DE BOOR A~D K. BOLLIG, B-splines without divided differences, ill "Geometric

Modeling" (G. Farin, Ed.), SIAM, Philadelphia, 1987, pp.2127.
8. E. COIIE~, T. LYCIIE, A"D R. RIESE~rELD, Discrete B-splines and subdivision techniques

in computer aided geometric design and computer graphics, Comput. Graphics Im{/~e

Process. 14 (1980), 87 III.
9. R. N. GOLDMA~. Markov chains and computer-aided geometric design. I. Problems and

constraints. ACM TraIlS. Graphics 3 (1984), 204-222.
10. R. N. GOLl)MAI', P6lya's urn model and computer-aided geometric design, SIAM J.

Algehraic Discrete Methods 6 (1985 I, 1-28.
II. R. N. GOLDMAI', Urn models and B-splines. COllstr. Approx. 4 (1988), 265 288.
12. E. T. Y. LEE. Some remarks concerning B-splines, Comput. Aided Geom. Desigll 2 (1985 l,

307- 311.
13. M. 1. MARSDES, An identity for spline functions with applications to variation·

diminishing spline approximation, J. Approx. Theon' 3 (1970), 7-49.


